18.7 C
London
Monday, September 2, 2024

ios – Replace CoreML mannequin on machine provides unfavourable MSE loss


I transformed a toy Pytorch regression mannequin to CoreML mlmodel utilizing coremltools and set it to be updatable with mean_squared_error_loss. However when testing the coaching, the context.metrics[.lossValue] may give unfavourable worth as proven within the screenshot beneath. I used to be questioning if I used a improper option to extract the coaching loss? Does context.metrics[.lossValue] actually give MSE if I used coremltools operate set_mean_squared_error_loss to set the loss? Any suggestion is appreciated.

I’m utilizing coremltools==7.0, xcode==15.0.1

enter image description here
enter image description here

let progressHandlers = MLUpdateProgressHandlers(forEvents: [.trainingBegin, .epochEnd],
            progressHandler: { context in
                change context.occasion {
                    case .trainingBegin:
                        print("Coaching started.")
                    case .epochEnd:
                        let loss = context.metrics[.lossValue] as! Double
                        lossValues.append(loss)
                        let validationLoss = computeValidationLoss(mannequin: context.mannequin, validationData: validationData)
                        validationLossValues.append(validationLoss)
                        print("Epoch (context.metrics[.epochIndex]!) ended. Coaching Loss: (loss), Validation Loss: (validationLoss)")
                    print("(context.metrics[.lossValue]!)")
                    default:
                        break
                }
            },
            completionHandler: { context in
                if let error = context.activity.error {
                    print("Replace activity failed with error: (error)")
                } else {
                    print("Replace activity accomplished")
                }
            }
        )

Right here is my code to transform Pytorch mannequin to updatable CoreML mannequin:

import torch
import torch.optim as optim
import torch.nn as nn
import coremltools as ct

# Outline a easy neural community with two layers
class SimpleRegressionModel(nn.Module):
    def __init__(self):
        tremendous(SimpleRegressionModel, self).__init__()
        self.layer1 = nn.Linear(2, 5) # 2 inputs, 5 outputs
        self.layer2 = nn.Linear(5, 1)  # 5 inputs, 1 output

    def ahead(self, x):
        x = torch.relu(self.layer1(x))
        x = self.layer2(x)
        return x

# Create the mannequin
mannequin = SimpleRegressionModel()

# Create a pattern enter tensor
sample_input = torch.rand(1, 2)  # Modify the form based on your mannequin's enter

# Hint the mannequin with a pattern enter
traced_model = torch.jit.hint(mannequin, sample_input)

# Convert the traced mannequin to Core ML format
input_features = [ct.TensorType(shape=(1, 2))]
output_features = ["output"]
mlmodel = ct.convert(
    traced_model,
    inputs=input_features,
    convert_to="neuralnetwork"
)

mlmodel.save("regression.mlmodel")


import coremltools
from coremltools.fashions.neural_network import NeuralNetworkBuilder, SgdParams, AdamParams
from coremltools.fashions import datatypes

# Load the mannequin specification
spec = coremltools.utils.load_spec('regression.mlmodel')
builder = NeuralNetworkBuilder(spec=spec)

builder.inspect_output_features() # Identify: linear_1
          
# Make layers updatable
builder.make_updatable(['linear_0', 'linear_1'])

# Manually add a imply squared error loss layer
characteristic = ('linear_1', datatypes.Array(1))
builder.set_mean_squared_error_loss(identify="lossLayer", input_feature=characteristic)


# Outline the optimizer (SGD on this instance)
# sgd_params = SgdParams(lr=0.001, batch=16)  # Modify studying price and batch measurement as wanted
# builder.set_sgd_optimizer(sgd_params)

# outline the optimizer (Adam on this instance)
adam_params = AdamParams(lr=0.01, beta1=0.9, beta2=0.999, eps=1e-8, batch=16)
builder.set_adam_optimizer(adam_params)

# Set the variety of epochs
builder.set_epochs(100)

# Optionally, set descriptions in your coaching inputs
spec.description.trainingInput[0].shortDescription = 'Enter information'
spec.description.trainingInput[1].shortDescription = 'Goal output information'

# Save the up to date mannequin
updated_model = coremltools.fashions.MLModel(spec)
updated_model.save('updatable_regression30.mlmodel')

Right here is the code I exploit to attempt to replace the saved updatable_regression30.mlmodel:

import CoreML

import GameKit

func generateSampleData(numSamples: Int, seed: UInt64) -> ([MLMultiArray], [MLMultiArray]) {
    var inputArray = [MLMultiArray]()
    var outputArray = [MLMultiArray]()

    // Create a random quantity generator with a hard and fast seed
    let randomSource = GKLinearCongruentialRandomSource(seed: seed)
    let randomDistribution = GKRandomDistribution(randomSource: randomSource, lowestValue: 0, highestValue: 1000)

    for _ in 0..<numSamples {
        do {
            let enter = strive MLMultiArray(form: [1, 2], dataType: .float32)
            let output = strive MLMultiArray(form: [1], dataType: .float32)

            var sumInput: Float = 0

            for i in 0..<enter.form[1].intValue {
                // Generate random worth utilizing the mounted seed generator
                let inputValue = Float(randomDistribution.nextInt()) / 1000.0
                enter[[0, i] as [NSNumber]] = NSNumber(worth: inputValue)
                sumInput += inputValue
            }

            output[0] = NSNumber(worth: 10.0 * sumInput + 1.0)

            inputArray.append(enter)
            outputArray.append(output)
        } catch {
            print("Error occurred whereas creating MLMultiArrays: (error)")
        }
    }

    return (inputArray, outputArray)
}

func computeValidationLoss(mannequin: MLModel, validationData: ([MLMultiArray], [MLMultiArray])) -> Double {
    let (inputData, outputData) = validationData
    var totalLoss: Double = 0

    for (index, enter) in inputData.enumerated() {
        let output = outputData[index]
        
        // Utilizing optionally available binding to securely unwrap the prediction
        if let prediction = strive? mannequin.prediction(from: MLDictionaryFeatureProvider(dictionary: ["x": MLFeatureValue(multiArray: input)])),
           let predictedOutput = prediction.featureValue(for: "linear_1")?.multiArrayValue {
            
            // Now you'll be able to safely use predictedOutput
            let loss = (output[0].doubleValue - predictedOutput[0].doubleValue)
            totalLoss += loss * loss // Imply squared error
        }
    }
    return totalLoss / Double(inputData.depend) // Calculating the imply of squared errors
}


func trainModel() {
    // Load the updatable mannequin
    guard let updatableModelURL = Bundle.principal.url(forResource: "updatable_regression30", withExtension: "mlmodelc") else {
        print("Didn't load the updatable mannequin")
        return
    }

    // Generate pattern information
    let (inputData, outputData) = generateSampleData(numSamples: 200, seed: 8)
    
    let validationData = generateSampleData(numSamples: 100, seed:18)

    // Create an MLArrayBatchProvider from the pattern information
    var featureProviders = [MLFeatureProvider]()
    for (index, enter) in inputData.enumerated() {
        let output = outputData[index]
        let dataPointFeatures: [String: MLFeatureValue] = [
            "x": MLFeatureValue(multiArray: input),
            "linear_1_true": MLFeatureValue(multiArray: output)
        ]
        if let supplier = strive? MLDictionaryFeatureProvider(dictionary: dataPointFeatures) {
            featureProviders.append(supplier)
        }
    }
    let batchProvider = MLArrayBatchProvider(array: featureProviders)
    
    
    // Outline progress handlers
    var lossValues: [Double] = []
    var validationLossValues: [Double] = []

        let progressHandlers = MLUpdateProgressHandlers(forEvents: [.trainingBegin, .epochEnd],
            progressHandler: { context in
                change context.occasion {
                    case .trainingBegin:
                        print("Coaching started.")
                    case .epochEnd:
                        let loss = context.metrics[.lossValue] as! Double
                        lossValues.append(loss)
                        let validationLoss = computeValidationLoss(mannequin: context.mannequin, validationData: validationData)
                        validationLossValues.append(validationLoss)
                        print("Epoch (context.metrics[.epochIndex]!) ended. Coaching Loss: (loss), Validation Loss: (validationLoss)")
                    print("(context.metrics[.lossValue]!)")
                    default:
                        break
                }
            },
            completionHandler: { context in
                if let error = context.activity.error {
                    print("Replace activity failed with error: (error)")
                } else {
                    let updatedModel = context.mannequin
                    do {
                        let fileManager = FileManager.default
                        let documentDirectory = strive fileManager.url(for: .documentDirectory, in: .userDomainMask, appropriateFor:nil, create:true)
                        let fileURL = documentDirectory.appendingPathComponent("CatDog5.mlmodelc")
                        strive updatedModel.write(to: fileURL)
                        print("Mannequin up to date and saved efficiently to (fileURL)")
                    } catch {
                        print("Failed to save lots of the up to date mannequin: (error)")
                    }
                }
            }
        )

        // Create an replace activity with progress handlers
        let updateTask = strive! MLUpdateTask(forModelAt: updatableModelURL,
                                           trainingData: batchProvider,
                                           configuration: nil,
                                           progressHandlers: progressHandlers)
    
    // Begin the replace activity
    updateTask.resume()
}

trainModel()

Latest news
Related news

LEAVE A REPLY

Please enter your comment!
Please enter your name here